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1 Recall
Recall that the primal problem (P ) that we discussed yesterday:

P := inf
x∈K

f(x) subject to K :=

{
gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , ℓ
(P )

where f, gi : Rn → R are convex differentiable functions while hj : Rn → R are affine
functions, i.e. hj(x) = AT

j x+ bj .

and we define the Lagrangian function L by

L(x, λ, µ) := f(x) +
ℓ∑

i=1

λigi(x) +
m∑
j=1

µjhj(x)

for λi ≥ 0, µj ∈ R for all i = 1, . . . , ℓ and j = 1, . . . ,m, and the Lagrange dual problem is defined
as:

D := sup
λi∈R+, i=1,...,ℓ
µj∈R, j=1,...,m

d(λ, µ) (D)

where d(λ, µ) := inf
x∈Rn

L(x, λ, µ).

Theorem 1. Under Slater condition (i.e. there exists x ∈ K such that gi(x) < 0, i = 1, . . . ,m and
hj(x) = 0, j = 1, . . . , ℓ), one has

1. P = D.

2. there exists (λ∗, µ∗) ∈ R+
m × Rℓ such that P = D = d (λ∗, µ∗).

Also, we discussed two systems of constraints as

f(x) < C,
gi(x) ≤ 0, i = 1, . . . ,m
hj(x) = 0, j = 1, . . . , ℓ

(I)

d(λ, µ) ≥ C, for (λ, µ) ∈ Rm
+ × Rℓ (II)

and a proposition:

Proposition 2. If (I) is insolvable and Slater condition holds, then (II) is solvable.

Proof of Theorem. 1. Weak Duality: P ≥ D.

2. Set C = P in both (I) and (II) so that (I) is insolvable.
By the proposition, (II) is solvable, so there exists (λ∗, µ∗) ∈ Rm

+ × Rℓ such that D ≥
d(λ∗, µ∗) ≥ C = P.
Thus, we have P = d(λ∗, µ∗) = D.
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Theorem 3. (Saddle Point)

(i) Let (x∗, (λ∗, µ∗)) ∈ Rn × Rm
+ × Rℓ be a saddle point in the sense that

L(x, λ∗, µ∗) ≥ L(x∗, λ∗, µ∗) ≥ L(x∗, λ, µ), ∀x ∈ Rn, (λ, µ) ∈ Rm
+ × Rℓ.

Then x∗ is an optimizer of (P ).

(ii) Let x∗ be an optimizer of (P ) and Slater condition holds. Then there exists (λ∗, µ∗) ∈ Rm
+ ×Rℓ

such that (x∗, (λ∗, µ∗)) is a saddle point of

L(x, λ∗, µ∗) ≥ L(x∗, λ∗, µ∗) ≥ L(x∗, λ, µ), ∀x ∈ Rn, (λ, µ) ∈ Rm
+ × Rℓ.

Proof of (ii). By Duality Theorem, there exists (λ∗, µ∗) ∈ Rm
+ × Rℓ such that

P = D = d (λ∗, µ∗) = inf
x∈Rn

L(x, λ∗, µ∗)

This implies that

f(x∗) = P = inf
x∈Rn

L(x, λ∗, µ∗)

≤ L(x∗, λ∗, µ∗)

= f(x∗) +
m∑
i=1

λ∗
i gi(x

∗) +
ℓ∑

j=1

µ∗
jhj(x

∗)

Since x∗ ∈ K, we know{
gi(x) ≤ 0, i = 1, . . . ,m

hj(x
∗) = 0, j = 1, . . . , ℓ

=⇒
m∑
i=1

λ∗
i gi(x

∗) ≤ 0 and
ℓ∑

j=1

µ∗
jhj(x

∗) = 0.

From the above, we can deduce that

f(x∗) ≤ f(x∗) +
m∑
i=1

λ∗
i gi(x

∗)︸ ︷︷ ︸
≤0

=⇒
m∑
i=1

λ∗
i gi(x

∗) = 0

=⇒ λ∗
i gi(x

∗) = 0, ∀i = 1, . . . ,m

Hence, we have

L(x, λ∗, µ∗) ≥ L(x∗, λ∗, µ∗), ∀x ∈ Rn

= f(x∗)

≥ f(x∗) +
∑

λigi(x
∗)︸ ︷︷ ︸

≤0

+
∑

µjhj(x
∗)︸ ︷︷ ︸

=0

= L(x∗, λ, µ)

for any (λ, µ) ∈ Rm
+ × Rℓ.
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2 Qualification
Recall that, we discuss the Mangasarian Fromovitz qualification condition before.

Proposition 4. Let x ∈ K satisfies the followings (Mangasarian Fromovitz condition)

1. the family of vectors (∇h1(x), . . . ,∇hm(x)) is linearly independent.

2. there exists a vector v ∈ Rn satisfying

⟨∇hj(x), v⟩ = 0, ∀j = 1, . . . ,m

and
⟨∇gi(x), v⟩ < 0, ∀i ∈ I(x) := {k : gk(x) = 0}.

Then the constraint K is qualified at x ∈ K.

Proposition 5. Let gi(x) be a C1 convex function, and hj(x) = AT
j x+ bj . Assume that

1. {A1, . . . , Aℓ} is linearly independent.

2. There exists x̂ ∈ Rn such that

gi(x̂) < 0, i = 1, · · · ,m
hj(x̂) = 0, j = 1, . . . , ℓ

Then, qualification condition holds for all x ∈ K.

Proof. 1. To apply the Mangasarian Fromovitz condition, we check that

{∇h1(x), · · · ,∇hℓ(x)} = {A1, · · · , Aℓ}

is linearly independent.

2. For all x ̸= x̂, and satisfying gi(x) ≤ 0, hj(x) = 0 and gi(x̂) < 0, hj(x̂) = 0. Put v := x̂-x,
then

0 = hj(x)− hj(x̂) = AT
j (x̂− x) = ⟨∇hj(x), v⟩

Further, when gi(x) = 0, we have

⟨∇gi(x), v⟩ = ⟨∇gi(x), x̂− x⟩ ≤ gi(x̂)− gi(x) = gi(x̂) < 0

Thus, applying the Mangasarian Fromovitz condition, the proof is finished.

— End of Lecture 17 —
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